Conductance catheter measurements of lumen area of stenotic coronary arteries: theory and experiment.
نویسندگان
چکیده
An injection of saline solution is required for the measurement of vessel lumen area using a conductance catheter. The injection of room temperature saline to displace blood in a vessel inevitably involves mass and heat transport and electric field conductance. The objective of the present study is to understand the accuracy of conductance method based on the phenomena associated with the saline injection into a stenotic blood vessel. Computational fluid dynamics were performed to simulate flow and its relation to transport and electric field in a stenotic artery for two different sized conductance catheters (0.9 and 0.35 mm diameter) over a range of occlusions [56-84% cross-sectional area (CSA) stenosis]. The results suggest that the performance of conductance catheter is dependent on catheter size and severity of stenosis more significantly for 0.9 mm than for 0.35 mm catheter. Specifically, the time of detection of 95% of injected saline solution at the detection electrodes was shown to range from 0.67 to 3.7 s and 0.82 to 0.94 s for 0.9 mm and 0.35 mm catheter, respectively. The results also suggest that the detection electrodes of conductance catheter should be placed outside of flow recirculation region distal to the stenosis to minimize the detection time. Finally, the simulations show that the accuracy in distal CSA measurements, however, is not significantly altered by whether the position of detection electrodes is inside or outside of recirculation zone (error was within 12% regardless of detection electrodes position). The results were experimentally validated for one lesion geometry and the simulation results are within 8% of actual measurements. The simulation of conductance catheter injection method may lead to further optimization of device and method for accurate sizing of diseased coronary arteries, which has clinical relevance to percutaneous intervention.
منابع مشابه
TRANSLATIONAL PHYSIOLOGY New method to measure coronary velocity and coronary flow reserve
Zhang ZD, Svendsen M, Choy JS, Sinha AK, Huo Y, Yoshida K, Molloi S, Kassab GS. New method to measure coronary velocity and coronary flow reserve. Am J Physiol Heart Circ Physiol 301: H21–H28, 2011. First published May 6, 2011; doi:10.1152/ajpheart.00080.2011.—Coronary flow reserve (CFR) is an important index of coronary microcirculatory function. The objective of this study was to validate the...
متن کاملNew method to measure coronary velocity and coronary flow reserve.
Coronary flow reserve (CFR) is an important index of coronary microcirculatory function. The objective of this study was to validate the reproducibility and accuracy of intravascular conductance catheter-based method for measurements of baseline and hyperemic coronary flow velocity (and hence CFR). The absolute coronary blood velocity was determined by measuring the time of transit of a saline ...
متن کاملImpact of surrounding tissue on conductance measurement of coronary and peripheral lumen area.
Parallel conductance (electric current flow through surrounding tissue) is an important determinant of accurate measurements of arterial lumen diameter, using the conductance method. The present study is focused on the role of non-uniform geometrical/electrical configurations of surrounding tissue, which are a primary source of electric current leakage. Computational models were constructed to ...
متن کاملImplications of complex anatomical junctions on conductance catheter measurements of coronary arteries.
In vivo, the position of the conductance catheter to measure vessel lumen cross-sectional area may vary depending on where the conductance catheter is deployed in the complex anatomical geometry of arteries, including branches, bifurcations, or curvatures. The objective here is to determine how such geometric variations affect the cross-sectional area (CSA) estimates obtained using the cylindri...
متن کاملNovel method for measurement of medium size arterial lumen area with an impedance catheter: in vivo validation.
There is no doubt that the transformation of a cardiac catheter into a conductance catheter that allows reliable and accurate assessment of lumen cross-sectional area (CSA) will provide a powerful diagnostic and treatment tool for the invasive cardiologist. The objective of this study was to develop a method based on the impedance catheter that allows accurate and reproducible measurements of C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 111 3 شماره
صفحات -
تاریخ انتشار 2011